카테고리 보관물: Microscope

광학 현미경

현미경 교육 자료

현미경의 분류

용도에 의한 분류

  • 생물현미경
  • 금속현미경
  • 측정현미경
  • 실체현미경

형태에 의한 분류

  • 정립형 현미경
  • 도립형 현미경

기능에 의한 분류

  • 명시야 현미경
  • 암시야 현미경
  • 편광 현미경
  • 미분간섭 현미경
  • 위상차 현미경
  • 형광 현미경
  • 공초점 현미경

그외 현미경

  • 적외선 현미경
  • 자외선 현미경
  • X선 현미경
  • 전자현미경
  • 원자 현미경

purposse of this wepsite

현미경 교육 사이트 개설 취지

www.microscopy.co.kr

이 사이트는 현미경에 대한 궁금증을 해결하는데 있어서, 도움이 되고자 하는 교육 목적으로 준비하고 있는 사이트입니다만, 현업에서의 경험을 포함하는 상업 사이트로서의 성격도 포함하고 있습니다.

Site 관리자 – 진재환 올림

E-mail : jhjin@jnoptic.com

HISTORY OF THE MICROSCOE

광학 현미경의 역사

단렌즈 현미경 – Single Lens Microscope

발명자 : 안톤 판 레이우엔훅 ( Anton van Leeuwenhoek : 1631 ~ 1723)

복식현미경 – Compound microscope

robert hooke microscope에 대한 이미지 검색결과
발명자: 로버트 후크 ( Robert Hooke : 1635 ~ 1703 ))

가시광선을 주로 사용하는 광학 현미경은 상기와 같이 단렌즈 현미경으로 시작하여 대물렌즈와 접안렌즈를 조합하여 사용하는 복합현미경의 모습으로 기본 구조를 갖추어 왔습니다. 또한 보다 높은 배율을 추구할 수록 흐려지는 이미지의 질을 높이기 위한, 수 많은 시도의 결과로 현재 우리는 양질의 이미지를 볼 수 있는 현미경을 사용할 수 있습니다.

또한 일반인이 흔히 알고 있는 광학현미경은 Bright Fileld 라고 불리는 관찰법으로써 설명 할 수 있습니다. 하지만, 이 관찰법만으로는 다양한 샘플을 보고자 하는 탐구자들의 욕구를 만족시키기 어렵기 때문에, 보다 다양한 관찰 방법이 개발되어 왔고, 향후에도 새로운 관찰법이 끊임없이 개발될 것으로 기대됩니다.

참고로, 오늘날의 대표적인 현미경 관찰법을 열거하자면 BF, DF, PO, Simple PO, DIC, PH, FLUORESCENCE 등을 들수 있습니다.

전자 현미경

SEM ; Scanning Eelectron Microscope

원자 현미경

AFM ; Atomic Force Microscope

Köhler illumination

쾰러 조명 장치

관찰하는 샘플의 전체 Field of View에서 밝고 균일 한 조명을 구현하기 위해서 사용되는 일반적인 조명 방법입니다. ( Köhler illumination )

조명 광원이 광학계의 내부에서 결상을 하게 되어 있습니다. 예전에 사용되었던 크리티컬 조명에서는 샘플의 상에 조명광원의 필라멘트 상이 겹쳐서 보이게 됩니다만, 쾰러 조명은 조명의 결상 위치를 무한보정 대물렌즈의 후초점면에 위치하도록 유도함으로서 샘플의 상에 광원의 상이 중복되는 문제점을 해결 하면서, 동시에 샘플 전체에 균일한 조명을 조사하는 것이 가능해 졌습니다.

현미경의 사용에 있어서 가장 중요한 포인트

현미경의 모든 관찰법은 상기와 같은 쾰러 조명을 기반으로 설계되어 있습니다. 따라서 쾰러 조명의 세팅 또는 설정이 틀어져 있는 상태에서의 현미경의 관찰은 그 설계 목적을 완전히 벗어나 있는 현미경 관찰을 하게 되는 것이며, 사용중이라고 생각하는 본래의 관찰법과는 상이한 알 수 없는 관찰법으로 샘플을 관찰 하는 비효율적인 경우가 빈번하게 발생되고 있습니다.

쾰러 조명에 대한 명칭을 생소하시게 느껴지신다면, 독자께서는 지금까지 현미경의 중요한 포인트를 제대로 알지 못하고 사용하시고 계셨을 가능성이 있습니다 . 바이오 이미징을 하시는 관찰자께서는 사용하시는 현미경의 쾰러 조명 설정이 제대로 되어있는지 반드시 확인하실 필요가 있습니다.

다만, 반사용 현미경을 주로 사용하시는 산업계 현미경 사용자 분들은 이러한 쾰러 조명의 잘못된 설정으로 받는 영향이 상대적으로는 적습니다. 그 이유로는 반사관찰을 위주로 하는 현미경에서는 대물렌즈 자체가 콘덴서 역할을 하기 때문에 쾰러 조명을 설정하기 위해서 콘덴서 위치 교정이 따로 필요하기 않기 때문입니다.

반사형 조명을 사용하는 현미경에서는 샘플에 초점을 맞추면, 그 자체로 콘덴서의 높이 설정이 완료되고 ( X, Y, Z축 위치 설정 ), Field 조리개(diaphragm)와 Aperture 조리개(diaphragm)의 설정(XY축 교정)이 상대적으로 변경되기 어려운 구조를 가지고 있기 때문에 입니다.

광학 구조 설명

KÖHLER ILLUMINATION은 현미경 광 경로 상에 2개의 결상계가 서로 결상 되지 않는 영역을 상보적으로 사용하도록 설계되어 있다.

Köhler illumination for fluorescence microscope

1st. 샘플의 상이 형성되는 결상계

첫째로는 샘플의 상이 형성되는 이미징용 결상계

  • Conjugate Field Planes
  • 샘플의 상이 결상 되는 위치
    • 접안렌즈의 Intermediate Image
    • 접안렌즈로 관찰시 눈의 시신경
    • Field Stop Diagphragm

2nd. 조명 광원이 형성되는 결상계

두번째로는 조명 광원의 상이 형성되는 결상계

  • Conjugate Aperture Planes
  • 조명 광원이 결상 되는 위치
    • 콘덴서의 전초점면(Front Focal Plane) 또는 Aperture diaphragm
    • 대물렌즈의 후초점면(Rear Focal Plane),
    • 접안렌즈 다음의 홍재조리개 이다. 참고로 시신경에 상이 결상하는 것이 아니기 때문에 형상을 인지 할 수 없습니다.

Polarization

편광 현미경

Polarization Microscopy

 

  • 편광현미경의 역사

19세기 중순 경 개발되어짐.

  • 편광현미경의 사용 용도

초기에는 암석과 광물의 연구에 주로 사용되어졌으나, 점차로 그 용도가 넓어져서 의약품, 공업제품 등 산업 전반에 걸쳐 이용분야가 확대 됨.

  • 편광현미경의 사용 목적

샘플의 광학적 성질을 조사하고,이를 통하여 샘플을 구성하는 물질이 무엇으로 이루어졌는지 동정 하기 위해 사용 됨.

  • 광학적 성질에 의한 샘플의 분류

광학적등방체

: 샘플에 빛이 통과 할때 어떠한 방향으로 빛이 진행하더라도 모든 방향에 대하여 동일한 광학적 영향을 준다.(복굴절 하지 않는다.)

예: 유리 등

광학적이방체

: 샘플에 빛이 통과 할때 빛이 진행하는 방향(각도)에 따라 다양한 복굴절을 한다.

일축성(isotropic body)

: 빛이 진행 할 때 복굴절하지 않는 광축을 하나만 가지고 있다.

예: 방해석, 석영 등

이축성(Anisotropic body)

: 빛이 진행 할 때 복굴절하지 않는 광축을 두개 가지고 있다.

 예: 운모, 장석, 각섬석, 휘석, 감람석 등

CKX53

CKX53 –
Compact type Inverted Microscope

소형 도립 현미경

배양 세포 관찰 

향상된 이미지 품질과 인체공학 설계로, Olympus CKX53은 라이브 셀 관찰, 세포 샘플링 및 처리, 이미지 캡처, 그리고 형광 관찰을 포함한 다양한 세포 배양 샘플에 뛰어난 성능과 효율적인 관찰 흐름을 제공합니다.  

라이브 셀 관찰

통합 위상차( iPC : Integrated Phase Contrast ) 현미경

CKX53 iPC 시스템을 이용하여 대물렌즈 배율( 4x, 10x, 20x , 40x ) 변경시, 콘덴서 측의 위상차 링슬릿의 연동 변경이 필요 없게 되어 효율적인 관찰 작업이 가능하고, 또한 위상차 설정이 틀어짐에 대한 수시 조정이 필요없어 언제나 선명한 샘플 관찰이 가능합니다.

2X 배율, FN 22의 대물렌즈로 선명하고 넓은 시야

PLN2X 대물렌즈를 위한 링 슬릿, CKX3-SLPAS는 직경 11 ㎜ , 시야수 22 ㎜ 를 갖습니다.

2X 대물렌즈는 다른 대물렌즈 보다 확연히 높은 contrast를 제공하여, 투명한 샘플도 명확하게 식별할 수 있습니다. 예를 들어, 96-웰 마이크로 플레이트 관찰시, 넓은 시야로 인하여 스테이지를 움직이지 않고 웰의 모든 세포를 관찰 할 수 있습니다.

IVC (Inversion Contrast) 기술을 사용한 3D 셀 관찰

새로 개발된 IVC 기술로, 위상차보다 시야 심도는 좁아지며, 개체의 모양이나 투명도와 관계없이 삼차원 이미지를 선명하게 합니다. 또한, IVC 관찰은 후광 효과나, 방향성 있는 그림자를 배제하여, 개체의 선명한 관찰을 가능하게 합니다.
* 10X 대물렌즈 (PLCN10X, CACHN10XIPC)는 새로운 IVC 관찰에 사용할 수 있습니다.

Glass Heater for microscope

TPi-CKX53X ( Thermo Glass Plate )

Microscope: Olympus CKX53 series

Applicable stage: XY mechanical stage CKX3-MVR

  • Setting range: ambient ~ 60℃
  • Plate dimension: W190 x D138
  • Heating area: W174 × D127
  • Glass thickness: 0.5 ㎜

형광 관찰 (Fluorescence Microscopy)

다양한 형광 시약과 선명한 시야

100 W 수은 램프 (U-LH100HG), 130 W 고압 수은 램프 (U-HGLGPS), 그리고 타사(3rd Party) LEDs*와 같은 여러 통합 광원을 이용하여 형광 이미지를 선명하게 관찰할 수 있습니다. 일반 연구용 형광현미경 IX3 및 BX3 에서 사용하는 미러 유닛을 동일하게 사용 할 수 있습니다.

3개의 형광미러 유닛을 장착할 수 있으나, Bright Field 관찰과 위상차 관찰에 영향을 줄 수 있으니 유닛 선택시 고려할 필요가 있습니다.

AcquCAM 23GR2 & CKX53
Image taken by AcquCAM 23GR2 with LUCPlanFLN40x Ph2, 1x Adapter, CKX53

밝은 조건에서 높은 Contrast

“Umbra Shield”는 특히 CKX53을 사용한 형광 관찰을 위해 설계되었습니다. 차단막은 실내 광원을 효과적으로 차단하여 형광의 대비를 향상하여 밝은 실험실 조건에서도 선명한 형광 관찰이 가능합니다. 위상차를 사용하는 경우, Umbra 차단막을 들어 올려 표본에 빛을 통과시킬 수 있습니다.

효율적인 세포 샘플링을 위한 사용자 중심 디자인

무균 조건에서의 효율적인 세포 관찰

CKX53 현미경은 UV 차단 코팅 덕분에 UV 살균 공정 중에 그대로 둘 수 있습니다. 이 시스템은 약 7kg (15.4lb)으로 이전 모델보다 가볍고 설치 공간이 더 작기 때문에 실험실 공간을 덜 차지합니다. 또한, 한 손으로 현미경을 움직일 수 있으며 관찰 경통의 목 부분을 이용하여 쉽게 운반 할 수 있습니다.

멸균 벤치 환경에서 간편한 세포 샘플링

CKX53의 접안렌즈와 광축/포커스 노브 사이의 거리가 짧으므로 작업자의 손의 위치를 자연스럽게 잡을 수 있어서 초점 및 셀 샘플링이 용이합니다.

다양한 세포 배양 용기를 사용할 수 있습니다.

CKX53의 공용 홀더로, 디쉬, 마이크로플레이트, 플라스크를 포함한 다양한 용기에서 배양된 세포를 확인하기 쉽습니다. 옵션 홀더가 부착되면, 최대 세 개의 35㎜ 배양 용기를 스테이지에 장착할 수 있습니다. 또한, 다양한 마이크로플레이트를 별도의 홀더 없이 다룰 수 있습니다.

다층 조직 플라스크(Multi-Layer Tissue Flask)를 위한 종합적인 관찰

CKX53의 폭과 탈착 가능한 콘덴서로 다층 조직 플라스크와 같은, 최대 190 ㎜ 높이의 배양 용기도 볼 수 있습니다. PLCN4X 대물렌즈의 우수한 초점 심도로 다층 조직 플라스크 내 바닥 두 개의 층의 세포를 빠르고 편하게 관찰할 수 있습니다.

다양한 용기를 사용하여 관찰 유연성 증대

홀더 암을 들어 올려서 수동으로 세포 배양 용기를 배치할 수 있습니다. 또한, 스테이지는 좌우로 최대 70 ㎜ 까지 확장할 수 있습니다.

Phase-contrast

위상차 현미경 관찰법

Phase contrast Microscopy

  • 위상차 관찰법 발명자 정보

Frits Frederik Zernike(네덜란드 과학자)

위상차 현미경 발명으로 노벨물리학상(1953)을 수상.

  •  발명 배경

  생물현미경에서 사용하는 대부분의 샘플은 무색투명한 특성을 가지고 있기때문에,  배율확대 만을 목적으로 하는 일반 현미경의 관찰법(Bright Field)에서는 투명하고 윤곽이 흐릿하게 보이기 때문에 제대로 된 관찰에 어려움이 있습니다.

  이 문제를 해결하기 위하여 샘플을 염색하는 방법이 사용하고 있습니다만,  이 방법으로는 살아있는 샘플의 관찰은 할 수 없습니다. 염색 도중에 샘플이 죽어버리기 때문입니다.

  • 위상차 현미경의 (개요)

위상차 관찰법(Phase-Contrast)은 샘플을 통과하는 직진광(하단 좌측 이미지)과 이 직진광이 샘플에 통과하면서 발생하는 회절광(하단 우측 이미지) 사이의 위상차 현상을 이용하여 살아있는 세포의 구조와 미생물의 상태변화를 볼게 있게 해주는 관찰법입니다.

  • 위상차 현미경의 원리 설명

  샘플의 한 포인트(샘플 평면 중의 한 점)를 통과하는 빛은 두 개의 광학 경로를 가지도록 설계 되어 있으며, 이 두개의 경로를 통과한 빛은 한점에 다시 한 점에 모여 확대된 상을 만들게 되지만, 다른 경로를 지나왔기 때문에 발생한 위상차에 의하여 보강 또는 소멸 간섭을 하게 된다.

  하단의 좌측이미지는 두개의 광학경로 중에 직진광의 경로이며, 하단의 우측이미지는 직진광이 샘플에 닿을때 발생하는 회절광의 경로이다. 참고로 직진광이 샘플이 없는 포인트를 지나가게 되면 산란이 생기지않아 회절광은 발생하지 않는다.

  회절광은 직진광의 위상에 비교하여 대략 1/4λ 지연되어 결상한다. 직진광은 위상판에 의하여 1/4λ 또는 3/4λ지연되어 결상한다.

  직진광이 위상판에 의하여 1/4λ 지연되어 회절광과 동일한 위상을 갖게 되면 직진광과 회절광의 위상이 서로 보강간섭을 하여 진폭이 커지게 되면 배경에서는 직진광의 영향만 받기 때문에 샘플이 배경 보다 밝게 보인다. (Negative contrast)

  반대로  직진광이 위상판에 의하여 위상이 3/4λ 지연되면 직진광과 회절광은 소멸 간섭을 하게 되어 샘플은 직진광의 영향만 받는 배경보다 어둡게 보인다. (Positive contrast)

 

 

 

 

 

Fluorescence microscopy

형광 현미경 관찰법 (검경법)

Fluorescence Microscopy

  • 물체에 강한 빛을 조사할 때 발현되는 형광을 이용하여 물체의 구조를 관찰하거나 형광의 유무와 색조를 이용하여 물질을 판별한는 현미경입니다.
  • 발현되는 형광의 양을 측광하여 물질의 특성을 파악하고자 하는 경우에도 사용되고 있습니다.
  • 일반 생물 현미경은 주로 투과 조명을 사용합니다만, 근래의 형광현미경은 주로 반사조명을 사용하고 있습니다.

형광 현미경 샘플 이미지 ( by J.H.JIN )

Fluorochrome
( Fluorophores or Fluorescent Probes)

형광은 특정 파장의 빛을 흡수하는 동시에 다른 파장(흡수 파장보다 긴 파장), 작은 에너지의 빛을 반사하는 분자현상입니다. 이 과정은 excitation(여기) 와 emission(방출, 발광) 으로 알려져 있습니다.

유기 및 비유기의 많은 물질들은 형광 특성을 가지고 있습니다. 형광 현미경을 사용하는 초기의 현미경 학자들은 1차 형광 또는 자가 형광을 주로 보았으나, 지금은 매우 밝은 형광을 가지는 많은 염료(fluorochrome)가 개발되었고 이는 시편의 특정 부분을 염색하는데 사용이 됩니다. 이러한 방법은 2차 혹은 간접 형광이라고 합니다.

이러한 염료는 형광색소(Fluorochrome) 라고 하는데, 항체와 핵산과 같은 다른 유기 합성 물질을 결합할 때는 fluorescent probes 혹은 fluorophores로 불려집니다. (하지만, 일반적으로 이러한 용어들은 종종 같은 의미로 사용되어 지고 있습니다. )

형광 현미경의 구조 및 형광의 특성

형광 현미경 ( 좌 ) 과 명시야 현미경 ( 우 ) 의 광로 비교

  • 형광을 발현하기 위해서는 빛이 흡수가 필요합니다.
  • 형광은 여기광의 입사방향과 관계없이 모든 방향으로 발현합니다.
  • 일반적으로 형광의 강도는 여기광에 비교하여 매우 약합니다.
  • 형광 파장은 여기광과 관계없이 일정합니다.
  • 형광의 파장은 여기광(흡수광)의 파장보다 깁니다.(Stroke’s law)
  • 형광은 정도의 차는 있지만 소광 또는 퇴색합니다.

응용분야 로는

  • 의학,치학,약학 생물학의 기초연구 등
  • 임상위생검사, 가축위생, 식물내해 등의 시험연구 등
  • 화학, 약품, 반도체관련 등의 공업분야에서도 넓게 사용되어지고 있다.