카테고리 보관물: MICROSCOPY

BX51WI

ELECTROPHYSIOLOGY MICROSCOPE

AcquCAM Mono Camera for Physiology

CA3-pyramidal neuron_Alexa- Fluor-488 (This Image taken by AcquCAM 23S)
CA3-pyramidal neuron_Alexa- Fluor-488 (This Image taken by AcquCAM 23S)

Simultaneous observation
fluorescence observation image and IR-DIC image

Multi-Dual Port ( JNO-DPTS made by J.H.Jin )

AcquCAM 23S2 with Electro-Phyology

전기생리학 실험을 위한 패치 전용 카메라

전기생리학 전용 현미경 OLYMPUS BX51WI / BX61WI

형광 이미징용 광원장치 – CoolLED pE-340fura

XY-MOVER & BRIDGE STAGE
(JNO-WI-3 made by JNOPTIC Co., ltd)

XY-MOVER

전기생리학 전용 현미경 기능 개선

Accessories

전기생리학 – Best Image

IR – DIC 촬영 조건

  • NIR Camera : AcquCAM 23S
  • Microscope : OLYMPUS BX51WI

IR-DIC 와 형광이미지의 동시 촬영

Simultaneous observations ( IR – DIC & 형광 ) 촬영 조건

  • NIR Camera : AcquCAM 23S
  • Microscope : OLYMPUS BX51WI
  • Multi Dual Port : JNO-DPTS (개발자: J.H.JIN )

구형 OLYMPUS BX-WI의 이미지 업그레이드

NIKON 현미경의 이미지 개선 ( by J.H.JIN )

업그레이드 전 업그레이드 후 이미지 비교

이미지의 상단을 클릭하시면 원본이미지를 보실 수 있습니다.

JNO-BF&FL

동시 관찰 검경법
– at the same time

Bright Field & Fluorescence Microscopy

명시야 검경법과 형광 검경법의 동시 관찰

본 발명은 현미경 관찰법 중에서 형광 이미징 관찰과 명시야 이미징 관찰을 동시에 수행할 수 있는 관찰 장치 및 관찰 방법을 제공합니다.

Simultaneous observation(Fluorescene & Bright Field microscopy

Explanation of patent technology –
Simultaneous observation of fluorescence microscopy and bright field microscopy
발명자: (주) 제이엔옵틱 진재환
Bright Field Image(Simultaneous observation)
Simultaneous observation of fluorescence microscopy and bright field microscopy
(동시관찰) 5만원 지폐의 표면의 명시야 관찰 (Image taken with AcquCAM 23GR2)
Fluorescene image(Simultaneous observation)
Simultaneous observation of fluorescence microscopy and bright field microscopy
(동시관찰) 5만원 지폐의 형광 관찰 (Image taken with AcquCAM 23GR2)

Bright Field Image(Simultaneous observation)
Simultaneous observation of fluorescence microscopy and bright field microscopy
(동시관찰) 5만원 지폐의 표면의 명시야 관찰 (Image taken with AcquCAM 23GR2)
Fluorescene image(Simultaneous observation)
Simultaneous observation of fluorescence microscopy and bright field microscopy
(동시관찰) 5만원 지폐의 형광 관찰 (Image taken with AcquCAM 23GR2)

Fluorescent Samples

판매용 형광샘플 이미지

Fluorescent Samples for Sale

이미지 상단부분을 클릭하시면 원본 이미지를 확인하실 수 있습니다.

형광샘플 촬영 조건

  • 4ch 크로마 형광 필터
  • Camera: AcquCAM 23GR2
  • Objetives: UPlanApo40x
  • Camera Adapter: 1x
  • Light source: CoolLED pE-300ultra

Polarization

편광 현미경

Polarization Microscopy

 

  • 편광현미경의 역사

19세기 중순 경 개발되어짐.

  • 편광현미경의 사용 용도

초기에는 암석과 광물의 연구에 주로 사용되어졌으나, 점차로 그 용도가 넓어져서 의약품, 공업제품 등 산업 전반에 걸쳐 이용분야가 확대 됨.

  • 편광현미경의 사용 목적

샘플의 광학적 성질을 조사하고,이를 통하여 샘플을 구성하는 물질이 무엇으로 이루어졌는지 동정 하기 위해 사용 됨.

  • 광학적 성질에 의한 샘플의 분류

광학적등방체

: 샘플에 빛이 통과 할때 어떠한 방향으로 빛이 진행하더라도 모든 방향에 대하여 동일한 광학적 영향을 준다.(복굴절 하지 않는다.)

예: 유리 등

광학적이방체

: 샘플에 빛이 통과 할때 빛이 진행하는 방향(각도)에 따라 다양한 복굴절을 한다.

일축성(isotropic body)

: 빛이 진행 할 때 복굴절하지 않는 광축을 하나만 가지고 있다.

예: 방해석, 석영 등

이축성(Anisotropic body)

: 빛이 진행 할 때 복굴절하지 않는 광축을 두개 가지고 있다.

 예: 운모, 장석, 각섬석, 휘석, 감람석 등

Hoffman Modulation Contrast

호프만 모듈레이션(HMC)

Hoffman Modulation Contrast Microscopy

  •  용도 및 특징

    • 기본적으로 위상차 현미경 관찰법, 미분간섭관찰법과 동일한 목적으로 사용되어 진다.  무색투명한 표본을 특수한 광학적 원리를 이용하여 가시화 한다.  이를 통하여 살아있는 세포의 구조와 미생물의 움직임을 관찰하는 것이 가능하다.
    • 비스듬한(경사진)각도의 조명법으로도 비슷한 느낌의 입체감을 얻을 수 있다. 
    • 초점심도가 얕아서 조금씩 초점을 바꿔주면 광학적인 절단상을 연속해서 얻을 수 있다.
    • 미분간섭 관찰과의 차이점은 플라스틱 샤레 등의 편광성이 있는 용기에서도 사용이 가능하다. 
  • 원리

    • 구성

      • HMC용 콘덴서
        • 콘덴서의 상부에 편광판을 회전가능하게 하여 둔다
        • 콘덴서의 전측 초첨위치에 슬릿을 배치한다.
        • 상기 슬릿은 대물렌즈와 매칭되도록 교환이 가능
      • HMC용 대물렌즈
        • 대물렌즈의 후측조점 위치에 HMC모듈레이를 설치한 전용 렌즈

 

DIC microscopy (검경법)

미분 간섭 관찰 관찰법 ( DIC )

Differential Interference Contrast Microscopy(DIC)

  • 미분간섭관찰법 발명자

Georges (Jerzy) Nomarski (January 6, 1919 – 1997)

프랑스 귀화 물리학자 (폴란드 태생)

  • 발명 배경

이 관찰법은 샘플이 두꺼운 경우에 후광에 의한 광학 노이즈가 발현되는 위상차 현미경과 다르게 후광 효과가 발현되지 않으며, 샘플에 입체감을 부여하여 투명한 샘플에 대하여 보다 세밀한 관찰을 가능하게 합니다.

이 관찰법은 살아있는 생물학적 시료 및 염색을 하지 않은 조직의 관찰에 폭넓게 사용되고 있습니다.

  • DIC Microscopy 원리 설명

본 관찰법은 편광필터 2개(편광자, 검광자)와 DIC 프리즘 2개의 추가 유닛으로 구성되어 진다.

가장 바깥쪽에 위치하는 편광 필터 2개(편광자,검광자)는 Cross Nichole 상태로 설치 되어 있어야 하며, 이는 두개의 유닛 사이에 광학적 특성의 변화가 있는 빛만을 통과시키겠다는 목적으로 이해하면 된다.

 편광자를 통과한 빛이 처음 프리즘에 통과하면 빛은 2개의 경로를 가지게 된다. 이 두 빛은 광학진동 방향이 직교하며, 매우 미소한 거리 차를 가지고 진행한다.

샘플을 통과하고 다음 프리즘을 통과하면서 빛은 다시 동일한 경로를 갖는 빛으로 합성되며, 이때 다른 경로를 통과하였기 때문에 동일한 위상을 갖지 못하는 경우가 발생한다.

  동일한 위상일 경우에는 보강간섭 그렇지 않는 경우에는 소멸간섭이 발생한다.

DIC Microscopy 용어 설명(보강)

  • Phase Shift 
    1. 조정 방법: 1/4람다 필터 또는 DIC 프리즘에 있는 회전 레버을 이용하여 조정한다.
    2. 발생 효과: 보여 지는 샘플의 음영을 바꿀수 있다.
  • 쾰러 조명
    1. 최근에 사용되는 대부분의 관찰법은 쾰러 조명 세팅을 기본으로 하고 있음.
    2. 쾰러 조명을 기반으로 다양한 관찰법이 설계되어 있음.
Bright Field Microscopy와 DIC Microscopy의 이미지 비교

별칭 : Normaski Interference Contrast Microscopy ( NIC )

Fluorescence microscopy

형광 현미경 관찰법 (검경법)

Fluorescence Microscopy

  • 물체에 강한 빛을 조사할 때 발현되는 형광을 이용하여 물체의 구조를 관찰하거나 형광의 유무와 색조를 이용하여 물질을 판별한는 현미경입니다.
  • 발현되는 형광의 양을 측광하여 물질의 특성을 파악하고자 하는 경우에도 사용되고 있습니다.
  • 일반 생물 현미경은 주로 투과 조명을 사용합니다만, 근래의 형광현미경은 주로 반사조명을 사용하고 있습니다.

형광 현미경 샘플 이미지 ( by J.H.JIN )

Fluorochrome
( Fluorophores or Fluorescent Probes)

형광은 특정 파장의 빛을 흡수하는 동시에 다른 파장(흡수 파장보다 긴 파장), 작은 에너지의 빛을 반사하는 분자현상입니다. 이 과정은 excitation(여기) 와 emission(방출, 발광) 으로 알려져 있습니다.

유기 및 비유기의 많은 물질들은 형광 특성을 가지고 있습니다. 형광 현미경을 사용하는 초기의 현미경 학자들은 1차 형광 또는 자가 형광을 주로 보았으나, 지금은 매우 밝은 형광을 가지는 많은 염료(fluorochrome)가 개발되었고 이는 시편의 특정 부분을 염색하는데 사용이 됩니다. 이러한 방법은 2차 혹은 간접 형광이라고 합니다.

이러한 염료는 형광색소(Fluorochrome) 라고 하는데, 항체와 핵산과 같은 다른 유기 합성 물질을 결합할 때는 fluorescent probes 혹은 fluorophores로 불려집니다. (하지만, 일반적으로 이러한 용어들은 종종 같은 의미로 사용되어 지고 있습니다. )

형광 현미경의 구조 및 형광의 특성

형광 현미경 ( 좌 ) 과 명시야 현미경 ( 우 ) 의 광로 비교

  • 형광을 발현하기 위해서는 빛이 흡수가 필요합니다.
  • 형광은 여기광의 입사방향과 관계없이 모든 방향으로 발현합니다.
  • 일반적으로 형광의 강도는 여기광에 비교하여 매우 약합니다.
  • 형광 파장은 여기광과 관계없이 일정합니다.
  • 형광의 파장은 여기광(흡수광)의 파장보다 깁니다.(Stroke’s law)
  • 형광은 정도의 차는 있지만 소광 또는 퇴색합니다.

응용분야 로는

  • 의학,치학,약학 생물학의 기초연구 등
  • 임상위생검사, 가축위생, 식물내해 등의 시험연구 등
  • 화학, 약품, 반도체관련 등의 공업분야에서도 넓게 사용되어지고 있다.

Simple Polarization

간이 편광(Simple Po)

Simple Polarization  

  • Simple Polarization theory (원리 설명)

본 관찰법은 편광필터 2개(편광자, 검광자)로 이루어진다.

상기 이미지와 같이 편광자와 검광자가 90도 각도로 설치 되어 있는 상태를 흔히 직교니콜(Cross Nicol)이라고 불리면, 현미경에서의 주요 사용 목적은 광학적 특성의 변화가 있는 빛만을 통과시키고자 할 때 자주 사용된다.

일반적으로 빛은 모든 방향으로 진동하는 특성을 가지고 있으나, 세로 방향 편광자(좌측필터)를 통한 빛은 세로로 진동하는 빛만이 통과하게 되고, 우측 필터(검광자)는 세로 편광을 차단하는 역할을 하기 때문에 실제로 우측으로 투과되는 빛은 없다.

간이 편광 현미경에서는 편광자와 검광자의 사이에 샘플이 위치하게 되며, 샘플 재질이 등방체 특성을 가지고 있는 경우에는  샘플 만으로는 광학적 특성에 변화를 줄 수 없기 때문에 접안렌즈나 현미경 카메라 측에서 관찰 할 수 없는 어두운 이미지가 나오는 것이 일반적이다.

참고로 등방체가 아닌 물질인 플라스틱은 편광자를 통과하여 얻은 편광된 빛에 큰 영향을 주기 때문에 이를 염두에 두고 사용하여야 한다. 예를 들어, 미분간섭 관찰에서 광학 경로 상에 플라스틱과 같은 재질이  있으면, 미분간섭 관찰을 위한 광학 설계를 무의미하게 만들어 버린다.

  • Bright Field Microscopy와 Polarization Microscopy 이미지 비교

Dark Field

암시야 현미경 관찰법

Dark Field Microscopy (Transmitted & Reflected)
명시야(BF) 이미지와 암시야(DF) 이미지의 비교
투과 현미경에서 보는 Bright filed Image & Dark Field Image

암시야 (Dark field ) 검경법 의 특징

  • 스크래치나 단차, 파티클을 강조하는 관찰법
  • 샘플에 닿는 직접 조명광은 밖으로 유도하고, 오로지 샘플에서 나오는 산란광 만을 대물렌즈로 취하는 관찰법
  • 배경이 어두운 상태에서 샘플이 반짝이기 때문에 현미경의 분해능을 넘어서는 관찰이 가능하다. 

생물 (Bio) 현미경

투과 조명 _ Bright Field 와 Dark Field 

산업(금속) 현미경

반사조명 _ Bright Field 와 Dark Field